Recurrence Relations for Orthogonal Polynomials on Triangular Domains

نویسندگان

  • Abedallah Rababah
  • Mohsen Zayernouri
چکیده

Abstract: In Farouki et al, 2003, Legendre-weighted orthogonal polynomials Pn,r(u, v, w), r = 0, 1, . . . , n, n ≥ 0 on the triangular domain T = {(u, v, w) : u, v, w ≥ 0, u+ v+w = 1} are constructed, where u, v, w are the barycentric coordinates. Unfortunately, evaluating the explicit formulas requires many operations and is not very practical from an algorithmic point of view. Hence, there is a need for a more efficient alternative. A very convenient method for computing orthogonal polynomials is based on recurrence relations. Such recurrence relations are described in this paper for the triangular orthogonal polynomials, providing a simple and fast algorithm for their evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Jacobi-weighted Orthogonal Polynomials on Triangular Domains

We construct Jacobi-weighted orthogonal polynomials (α,β,γ) n,r (u,v,w), α,β,γ > −1, α+ β + γ = 0, on the triangular domain T . We show that these polynomials (α,β,γ) n,r (u, v,w) over the triangular domain T satisfy the following properties: (α,β,γ) n,r (u,v,w) ∈ n, n≥ 1, r = 0,1, . . . ,n, and (α,β,γ) n,r (u,v,w) ⊥ (α,β,γ) n,s (u,v,w) for r =s. Hence, (α,β,γ) n,r (u,v,w), n= 0,1,2, . . ., r =...

متن کامل

8 N ov 2 00 4 Lower - upper triangular decompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials Tom

For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...

متن کامل

decompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials

For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...

متن کامل

2 8 D ec 2 00 4 Lower - upper triangular decompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials ∗ Tom

For little q-Jacobi polynomials and q-Hahn polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as LU factorizations. We develop a general theory of LU factorizations related to complete systems of orthogonal polynomials with discrete orthogonality relation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016